Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38668223

RESUMO

Magnetite nanoparticles (NPs) possess properties that make them suitable for a wide range of applications. In recent years, interest in the synthesis of magnetite NPs and their surface functionalization has increased significantly, especially regarding their application in biomedicine such as for controlled and targeted drug delivery. There are several conventional methods for preparing magnetite NPs, all of which mostly utilize Fe(iii) and Fe(ii) salt precursors. In this study, we present a microwave hydrothermal synthesis for the precipitation of magnetite NPs at temperatures of 200 °C for 20 min and 260 °C for 5 min, with only iron(iii) as a precursor utilizing chamomile flower extract as a stabilizing, capping, and reducing agent. Products were characterized using FTIR, PXRD, SEM, and magnetometry. Our analysis revealed significant differences in the properties of magnetite NPs prepared with this approach, and the conventional two-precursor hydrothermal microwave method (sample MagH). FTIR and PXRD analyses confirmed coated magnetite particles. The temperature and magnetic-field dependence of magnetization indicate their superparamagnetic behavior. Importantly, the results of our study show the noticeable cytotoxicity of coated magnetite NPs-toxic to carcinoma cells but harmless to healthy cells-further emphasizing the potential of these NPs for biomedical applications.

2.
Antibiotics (Basel) ; 12(8)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37627651

RESUMO

Quaternary ammonium compounds (QACs) are among the most potent antimicrobial agents increasingly used by humans as disinfectants, antiseptics, surfactants, and biological dyes. As reports of bacterial co- and cross-resistance to QACs and their toxicity have emerged in recent years, new attempts are being made to develop soft QACs by introducing hydrolyzable groups that allow their controlled degradation. However, the development of such compounds has been hindered by the structural features that affect the bioactivity of QACs, one of them being polarity of the substituent near the quaternary center. To further investigate the influence of the polar group on the bioactivity of QACs, we synthesized 3-aminoquinuclidine salts for comparison with their structural analogues, 3-acetamidoquinuclidines. We found that the less polar amino-substituted compounds exhibited improved antibacterial activity over their more polar amide analogues. In addition to their better minimum inhibitory concentrations, the candidates were excellent at suppressing Staphylococcus aureus biofilm formation and killing bacteria almost immediately, as shown by the flow cytometry measurements. In addition, two candidates, namely QNH2-C14 and QNH2-C16, effectively suppressed bacterial growth even at concentrations below the MIC. QNH2-C14 was particularly effective at subinhibitory concentrations, inhibiting bacterial growth for up to 6 h. In addition, we found that the compounds targeted the bacterial membrane, leading to its perforation and subsequent cell death. Their low toxicity to human cells and low potential to develop bacterial resistance suggest that these compounds could serve as a basis for the development of new QACs.

3.
Pharmaceuticals (Basel) ; 16(2)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-37259335

RESUMO

Quaternary ammonium compounds (QACs) are among the most effective antimicrobial agents that have been used for more than a century. However, due to the growing trend of bacterial resistance and high toxicity of QACs, research in this field remains a pressing matter. Recent studies of the structure-activity relationship suggest that the introduction of the amide functional group into QAC structures results in soft variants that retain their antimicrobial properties while opening the possibility of fine-tuned activity regulation. Here, we report the synthesis and structure-function study of three structurally distinct series of naturally derived soft QACs. The obtained 3-amidoquinuclidine QACs showed a broad range of antibacterial activities related to the hydrophobic-hydrophilic balance of the QAC structures. All three series yielded candidates with minimal inhibitory concentrations (MIC) in the single-digit µM range. Time-resolved growth analysis revealed subtle differences in the antibacterial activity of the selected candidates. The versatile MIC values were recorded in different nutrient media, suggesting that the media composition may have a dramatic impact on the antibacterial potential. The new QACs were found to have excellent potential to suppress bacterial biofilm formation while exhibiting low ability to induce bacterial resistance. In addition, the selected candidates were found to be less toxic than commercially available QACs and proved to be potential substrates for protease degradation. These data suggest that 3-amidoquinuclidine QACs could be considered as novel antimicrobial agents that pose a low threat to ecosystems and human health.

4.
Pharmaceuticals (Basel) ; 15(7)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35890073

RESUMO

Quaternary ammonium salts (QAS) are irreplaceable membrane-active antimicrobial agents that have been widely used for nearly a century. Cetylpyridinium chloride (CPC) is one of the most potent QAS. However, recent data from the literature indicate that CPC activity against resistant bacterial strains is decreasing. The major QAS resistance pathway involves the QacR dimer, which regulates efflux pump expression. A plausible approach to address this issue is to structurally modify the CPC structure by adding other biologically active functional groups. Here, a series of QAS based on pyridine-4-aldoxime were synthesized, characterized, and tested for antimicrobial activity in vitro. Although we obtained several potent antiviral candidates, these candidates had lower antibacterial activity than CPC and were not toxic to human cell lines. We found that the addition of an oxime group to the pyridine backbone resulted in derivatives with large topological polar surfaces and with unfavorable cLog P values. Investigation of the antibacterial mode of action, involving the cell membrane, revealed altered cell morphologies in terms of corrugated and/or disrupted surface, while 87% of the cells studied exhibited a permeabilized membrane after 3 h of treatment at 4 × minimum inhibitory concentration (MIC). Molecular dynamic (MD) simulations of the interaction of QacR with a representative candidate showed rapid dimer disruption, whereas this was not observed for QacR and QacR bound to the structural analog CPC. This might explain the lower bioactivity of our compounds, as they are likely to cause premature expression of efflux pumps and thus activation of resistance.

5.
Antibiotics (Basel) ; 10(6)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34073082

RESUMO

Bacterial infections that do not respond to current treatments are increasing, thus there is a need for the development of new antibiotics. Series of 20 N-substituted quaternary salts of cinchonidine (CD) and their quasi-enantiomer cinchonine (CN) were prepared and their antimicrobial activity was assessed against a diverse panel of Gram-positive and Gram-negative bacteria. All tested compounds showed good antimicrobial potential (minimum inhibitory concentration (MIC) values 1.56 to 125.00 µg/mL), proved to be nontoxic to different human cell lines, and did not influence the production of reactive oxygen species (ROS). Seven compounds showed very strong bioactivity against some of the tested Gram-negative bacteria (MIC for E. coli and K. pneumoniae 6.25 µg/mL; MIC for P. aeruginosa 1.56 µg/mL). To establish a connection between antimicrobial data and potential energy surfaces (PES) of the compounds, activity/PES models using principal components of the disc diffusion assay and MIC and data towards PES data were built. An extensive machine learning procedure for the generation and cross-validation of multivariate linear regression models with a linear combination of original variables as well as their higher-order polynomial terms was performed. The best possible models with predicted R2(CD derivatives) = 0.9979 and R2(CN derivatives) = 0.9873 were established and presented. This activity/PES model can be used for accurate prediction of activities for new compounds based solely on their potential energy surfaces, which will enable wider screening and guided search for new potential leads. Based on the obtained results, N-quaternary derivatives of Cinchona alkaloids proved to be an excellent scaffold for further optimization of novel antibiotic species.

6.
Bioorg Chem ; 112: 104938, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33933803

RESUMO

Quaternary ammonium compounds (QACs) are antimicrobial agents displaying a broad spectrum of activity due to their mechanism of action targeting the bacterial membrane. The emergence of bacterial resistance to QACs, especially in times of pandemics, requires the continuous search for new and potent QACs structures. Here we report the synthesis and biological evaluation of QACs based on imidazole derivative, N-benzylimidazole. The antimicrobial activity was tested against a range of pathogenic bacteria and fungi, both ATCC and clinical isolates, showing varying activities ranging in minimal inhibitory concentrations (MICs) from as low as 7 ng/mL. The most promising compound, N-tetradecyl derivative (BnI-14), proved to be very potent against bacterial biofilms, even at sub-MIC doses, suggesting interference with the bacterial growth and/or division process. The BnI-14 treatment induces bacterial membrane disruption, as observed by fluorescence spectroscopy and atomic force microscopy and it also binds to DNA indicating that bacterial membrane might not be the only cellular target of QACs. Most importantly, BnI-14 exhibits low toxicity to healthy human cell lines, suggesting that N-benzylimidazolium-based QACs may be promising new antimicrobial agents.


Assuntos
Bactérias/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/crescimento & desenvolvimento , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Imidazóis/síntese química , Imidazóis/química , Imidazóis/farmacologia , Testes de Sensibilidade Microbiana , Estrutura Molecular , Sais/síntese química , Sais/química , Sais/farmacologia , Relação Estrutura-Atividade
7.
Molecules ; 24(14)2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31340589

RESUMO

Developing new antibiotics is currently very important since antibiotic resistance is one of the biggest problems of global health today. In the search for a new class of potential antimicrobial agents, ten new compounds were designed and synthesized based on the quinuclidinium heterocyclic core and the oxime functional group. The antimicrobial activity was assessed against a panel of representative gram-positive and gram-negative bacteria. All compounds demonstrated potent activity against the tested microorganisms, with the minimum inhibitory concentration (MIC) values ranging from 0.25 to 256.00 µg/mL. Among the tested compounds, two quaternary compounds, para-N-chlorobenzyl and meta-N-bromobenzyl quinuclidinium oximes, displayed the most potent and broad-spectrum activity against both gram-positive and gram-negative bacterial strains (MIC values from 0.25 to 4.00 µg/mL), with the lowest value for the important multidrug resistant gram-negative pathogen Pseudomonas aeruginosa. In the case of Klebsiella pneumoniae, activity of those compounds are 256-fold and 16-fold better than gentamicin, respectively. MTT assays showed that compounds are nontoxic for human cell lines. Multi-way analysis was used to separately reduce dimensionality of quantum chemical data and biological activity data to obtain a regression model and the required parameters for the enhancement of biological activity.


Assuntos
Antibacterianos/síntese química , Desenho de Fármacos , Oximas/síntese química , Quinuclidinas/síntese química , Antibacterianos/farmacologia , Bacillus cereus/efeitos dos fármacos , Bacillus cereus/crescimento & desenvolvimento , Clostridium perfringens/efeitos dos fármacos , Clostridium perfringens/crescimento & desenvolvimento , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/crescimento & desenvolvimento , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Gentamicinas/farmacologia , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Redução Dimensional com Múltiplos Fatores , Oximas/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Quinuclidinas/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento
8.
Eur J Med Chem ; 163: 626-635, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30562698

RESUMO

Quaternary ammonium compounds (QACs) are amphiphilic molecules displaying a broad-spectrum of antibacterial activity. QACs are commonly used antiseptics in industrial, home and hospital settings. Given the emergence of the QAC-resistant bacteria, there is an urgent need to design new QACs with good antimicrobial activity, able to escape the host resistance mechanism. Therefore, a series of QACs derived from quinuclidine-3-ol and an alkyl chain of variable length (QOH-C3 to -C14), was designed and synthesized. The antimicrobial potential of the new monoquaternary QACs was surveyed against seventeen strains of emerging food spoilage and pathogenic microorganisms, including clinical multidrug-resistant ESKAPE isolates. The QOH-C14 proved to have the strongest antimicrobial activity. It was highly active against all pathogens tested, particularly against the Gram-positive bacteria with minimal inhibitory concentrations (MICs) ranging from 0.06 to 3.9 µg/mL, and fungi exerting the MIC90 between 0.12 and 3.9 µg/mL. The potency of QOH-C14, confirmed that alkyl chains are an important part of the structure with their lengths playing a critical role in bioactivity of these compounds. The atomic force microscopy images show the disruption of a cell membrane upon the treatment with QOH-C14. These results were additionally confirmed by flow cytometry and fluorescence microscopy. A relatively low toxicity toward healthy human cells underline that QOH-C14 has a potential as new QAC antimicrobial candidate.


Assuntos
Antibacterianos/síntese química , Descoberta de Drogas , Farmacorresistência Bacteriana , Compostos de Amônio Quaternário/síntese química , Quinuclidinas/síntese química , Antibacterianos/farmacologia , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Compostos de Amônio Quaternário/farmacologia , Quinuclidinas/farmacologia , Relação Estrutura-Atividade
9.
Molecules ; 23(5)2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29783685

RESUMO

In the search for a new class of potential antimicrobial agents, five novel N-substituted imidazole 2-aldoximes and their six quaternary salts were evaluated. The antimicrobial activity was assessed against a panel of representative Gram-positive and Gram-negative bacteria, including multidrug resistant bacteria. All compounds demonstrated potent in vitro activity against the tested microorganisms, with MIC values ranging from 6.25 to 50.0 µg/mL. Among the tested compounds, two quaternary compounds (N-but-3-enyl- and meta- (10) or para- N-chlorobenzyl (11) imidazolium 2-aldoximes) displayed the most potent and broad-spectrum activity against both Gram-positive and Gram-negative bacterial strains. The broth microdilution assay was also used to investigate the antiresistance efficacy of the both most active compounds against a set of Enterobacteriaceae isolates carried a multiple extended-spectrum ß-lactamases (ESBLs) in comparison to eight clinically relevant antibiotics. N-but-3-enyl-N-meta-chlorobenzyl imidazolium 2-aldoxime was found to possess promising antiresistance efficacy against a wide range of ß-lactamases producing strains (MIC 2.0 to 16.0 µg/mL). Best results for that compound were obtained against Escherichia coli and Enterobacter cloacae producing multiple ß-lactamases form A and C molecular classes, which were 32- and 128-fold more potent than ceftazidime and cefotaxime, respectively. To visualize the results, principal component analysis was used as an additional classification tool. The mixture of ceftazidime and compound 10 (3 µg:2 µg) showed a strong activity and lower the necessary amount (up to 40-fold) of 10 against five of ESBL-producing isolates (MIC ≤ 1 µg/mL).


Assuntos
Antibacterianos/síntese química , Bactérias Gram-Negativas/efeitos dos fármacos , Imidazóis/química , Oximas/química , Antibacterianos/farmacologia , Cefotaxima/farmacologia , Ceftazidima/farmacologia , Farmacorresistência Bacteriana Múltipla , Enterobacter cloacae/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Imidazóis/farmacologia , Testes de Sensibilidade Microbiana , Oximas/farmacologia , beta-Lactamases/metabolismo
10.
Colloids Surf B Biointerfaces ; 140: 548-559, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26651596

RESUMO

Motivated by diverse biological and pharmacological activity of quinuclidine and oxime compounds we have synthesized and characterized novel class of surfactants, 3-hydroxyimino quinuclidinium bromides with different alkyl chains lengths (CnQNOH; n=12, 14 and 16). The incorporation of non conventional hydroxyimino quinuclidinium headgroup and variation in alkyl chain length affects hydrophilic-hydrophobic balance of surfactant molecule and thereby physicochemical properties important for its application. Therefore, newly synthesized surfactants were characterized by the combination of different experimental techniques: X-ray analysis, potentiometry, electrical conductivity, surface tension and dynamic light scattering measurements, as well as antimicrobial susceptibility tests. Comprehensive investigation of CnQNOH surfactants enabled insight into structure-property relationship i.e., way in which the arrangement of surfactant molecules in the crystal phase correlates with their solution behavior and biologically activity. The synthesized CnQNOH surfactants exhibited high adsorption efficiency and relatively low critical micelle concentrations. In addition, all investigated compounds showed very potent and promising activity against Gram-positive and clinically relevant Gram-negative bacterial strains compared to conventional antimicrobial agents: tetracycline and gentamicin. The overall results indicate that bicyclic headgroup with oxime moiety, which affects both hydrophilicity and hydrophobicity of CnQNOH molecule in addition to enabling hydrogen bonding, has dominant effect on crystal packing and physicochemical properties. The unique structural features of cationic surfactants with hydroxyimino quinuclidine headgroup along with diverse biological activity have made them promising structures in novel drug discovery. Obtained fundamental understanding how combination of different functionalities in a single surfactant molecule affects its physicochemical properties represents a good starting point for further biological research.


Assuntos
Antibacterianos/química , Bactérias/crescimento & desenvolvimento , Quinuclidinas/química , Tensoativos/química , Adsorção , Antibacterianos/farmacologia , Bactérias/classificação , Bactérias/efeitos dos fármacos , Cristalografia por Raios X , Condutividade Elétrica , Bactérias Gram-Negativas/classificação , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Positivas/classificação , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/crescimento & desenvolvimento , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Testes de Sensibilidade Microbiana , Estrutura Molecular , Quinuclidinas/farmacologia , Relação Estrutura-Atividade , Tensão Superficial , Tensoativos/farmacologia
11.
Bioorg Med Chem ; 21(23): 7499-506, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24126094

RESUMO

Two different series of N-substituted imidazolium oximes and their monoquaternary salts were synthesized and biologically tested with respect to their ability to inhibit growth a diverse panel of antibiotic susceptible Gram-positive and antibiotic resistant Gram-negative bacteria as well fungal strains. The newly synthesized compounds were analyzed by spectral studies to confirm their structure. The preliminary results showed that all compounds tested possess promising antimicrobial potential against both susceptible Gram-positive and antibiotic resistant Gram-negative isolates, exhibiting a wide range of MIC values from 0.14 to 100.0 µg/mL. The structure-activity relationship demonstrates that the p-methylphenyl and p-fluorophenyl groups in monoquaternary salts 6 and 7 attached directly to the imidazolium ring could be essential for observed remarkable inhibitory profiles against clinically important pathogens Pseudomonas aeruginosa (MIC=0.14 µg/mL) and Klebsiella pneumoniae (MIC=1.56 µg/mL). Furthermore, the broth microdilution assay was then used to investigate the antiresistance efficacy of compound 7 against fourteen extended-spectrum ß-lactamase (ESBL)-producing strains in comparison to eight clinically relevant antibiotics. Compound 7 exhibited a remarkable antiresistance profiles ranging between 0.39 and 12.50 µg/mL against all of ESBL-producing strains, which leads to the suggestion that may be interesting candidate for development of new antimicrobials to combat multidrug resistant Gram-negative bacteria.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Imidazóis/química , Imidazóis/farmacologia , Oximas/química , Oximas/farmacologia , Anti-Infecciosos/síntese química , Infecções Bacterianas/tratamento farmacológico , Resistência a Múltiplos Medicamentos , Fungos/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Imidazóis/síntese química , Testes de Sensibilidade Microbiana , Micoses/tratamento farmacológico , Oximas/síntese química
12.
Toxicology ; 233(1-3): 85-96, 2007 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-16962227

RESUMO

Monoquaternary N-benzyl-4-hydroxyiminomethylpyridinium bromide (Py-4-H) and its analogous with diverse substituents introduced into the phenyl ring (Py-4-CH(3), Py-4-Br, Py-4-Cl and Py-4-NO(2)) were synthesized in order to examine their potency as reactivators of tabun-inhibited human erythrocyte acetylcholinesterase (AChE; EC 3.1.1.7). Within 24h, the reactivation of tabun-inhibited AChE reached 80% with Py-4-CH(3), Py-4-Br and Py-4-Cl, 40% with Py-4-NO(2), and 30% with Py-4-H. The overall reactivation rate constants were up to 5.0min(-1)M(-1). All oximes inhibited human AChE reversibly, and the inhibition potency increased in the following order Py-4-Br

Assuntos
Acetilcolinesterase/química , Inibidores da Colinesterase , Reativadores da Colinesterase , Organofosfatos , Oximas , Compostos de Piridínio , Sítios de Ligação , Inibidores da Colinesterase/química , Inibidores da Colinesterase/toxicidade , Reativadores da Colinesterase/síntese química , Reativadores da Colinesterase/química , Eritrócitos/enzimologia , Humanos , Ligantes , Modelos Moleculares , Estrutura Molecular , Organofosfatos/química , Organofosfatos/toxicidade , Oximas/síntese química , Oximas/química , Oximas/farmacologia , Fosforilação , Compostos de Piridínio/síntese química , Compostos de Piridínio/química
13.
Bioorg Chem ; 34(2): 90-8, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16530804

RESUMO

The synthesis of racemic and enantiomerically pure 3-butanamidoquinuclidines ((+/-)-Bu, (R)-Bu and (S)-Bu), (1-3) and 3-benzamidoquinuclidines ((+/-)-Bz, (R)-Bz, and (S)-Bz), (4-6) is described. The N-quaternary derivatives, N-benzyl-3-butanamidoquinuclidinium bromides ((+/-)-BnlBu, (R)-BnlBu and (S)-BnlBu), (7-9) and N-benzyl-3-benzamidoquinuclidinium bromides ((+/-)-BnlBz, (R)-BnlBz and (S)-BnlBz), (10-12) were subsequently synthesized. The interaction of the four enantiomerically pure quaternary derivatives with horse serum butyrylcholinesterase (BChE) was tested. All tested compounds inhibited the enzyme. The best inhibitior of the enzyme was (S)-BnlBz with a K(i) = 3.7 microM. The inhibitor potency decreases in order (S)-BnlBz > (R)-BnlBz >> (R)-BnlBu > (S)-BnlBu.


Assuntos
Butirilcolinesterase/efeitos dos fármacos , Inibidores da Colinesterase/farmacologia , Quinuclidinas/farmacologia , Cromatografia Líquida de Alta Pressão , Espectroscopia de Ressonância Magnética
14.
Molecules ; 11(9): 726-30, 2006 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-17971748

RESUMO

The synthesis of racemic and enantiomerically pure N-p-methylbenzyl-3- and N-p-chlorobenzylbenzamidoquinuclidinium bromides (6-8 and 9-11, respectively) is described. These compounds were prepared from racemic or enantiomerically pure 3-benzamidoquinuclidines 3-5 using the appropriate quaternization reagents: p-methyl- benzyl bromide (1) and p-chlorobenzyl bromide (2).


Assuntos
Derivados de Benzeno/química , Derivados de Benzeno/síntese química , Quinuclidinas/química , Quinuclidinas/síntese química , Sais/síntese química , Sais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...